RFMO Best Practices Snapshot — 2021 Updated June 8, 2021 ## What Are FADS? Fish Aggregating Devices or FADs are man-made floating objects deployed to attract fish. FADs can be anchored in certain waters, but the majority are left to drift freely around the ocean. Most drifting FADs are equipped with a satellite buoy to aid in locating them. When fishers find other large floating objects (logs or marine debris), they can also equip them in the same manner. Thousands of drifting FADs are utilized by purse-seine fishing vessels at sea each year. Such floating objects – both man-made and naturally occurring – aggregate a number of fish species, including tunas, and therefore make commercial purse-seine tuna fishing more efficient, improving catch volume and often lowering vessel fuel usage. FAD usage varies by ocean and the fish species targeted. Worldwide, sets on fish aggregating devices (FADs) account for nearly 40% of tuna catches, including 50% of skipjack catches. ## Why Is FAD Management Needed? While FADs certainly have their benefits for purse-seine tuna fishing, their impact on tuna stocks and the broader marine ecosystem has increasingly come into question — specifically regarding the bycatch of non-target species like sharks and other marine life as well as impacts on sensitive areas due to stranded FADs. All types of fishing gears require active management, and FADs are no exception. Concerted global effort in every ocean is needed to: - Collect and report data on fishery statistics by set type (including FAD sets), through FAD logbooks and observers, and reporting by fleets to appropriate RFMOs and science bodies. - **Enhance monitoring** of FAD use and associated bycatch, including the provision of FAD tracking and echosounder data. - Adopt science-based FAD management measures, such as limits on the overall number of FADs used and/or FAD set made. - Use only non-entangling FADs that reduce entanglement and minimize bycatch and ghost fishing debris (see <u>ISSF's Guide to Non-Entangling FADs</u>) and implement FAD recovery policies. - Mitigate other environmental impacts due to FAD loss by promoting the use of biodegradable FADs and implementing FAD recovery policies. - Adopt effective bycatch mitigation measures for primary bycatch species, such as silky sharks. These elements are also important for purse-seine tuna fisheries in Fishery Improvement Projects (FIPs), including those seeking Marine Stewardship Council (MSC) certification, as well as MSC-certified <u>purse-seine tuna fisheries with conditions that</u> make sets on FADs (for more details see ISSF Technical Report 2019-11). The following table shows the **level of progress in each tuna RFMO** in implementing the recommended best practices. **Color Coding Key** Element(s) are consistent with recommended best practices. Some element(s) are present, but amendments or a change in procedure is needed to be consistent with best practices. Element (s) are missing or inconsistent with best practices. | RFMO | Sustainable Fish Stocks and Effective Management | | | | Minimizing Environmental Impact | | | | | | | |-------|--|--|---|---|--|--|--|---|--|--|---| | | FAD data
reporting by
set type
required and
flag State
compliance
assessed | Providing data on FAD use to RFMO science bodies (e.g., buoy tracks, echosounder estimates of biomass, etc.) even if not required | Science-based
limits on FAD
deployments
and/or FAD
sets | Time/Area FAD
closure | Require
the use of
NE FAD
designs | Promote the use of
biodegradable
FADs | Established FAD
marking scheme
consistent with
FAO guidelines | Established FAD recovery policy, including mechanisms to alert coastal States of derelict FADs that may impact sensitive habitats | Require
mitigation
measures for
silky sharks
(main bycatch
species in FAD
sets) | Adopt
safe
handling
and
release
practices
for
sharks,
rays and
sea
turtles | Prohibit
intentional
setting on
whale
sharks and
cetaceans | | IOTC | Data
required, but
IOTC
compliance
assessment
weak | Data of tracks of all buoys be provided to the IOTC Secretariat for compliance purposes. Data complied at monthy intervals with a time delay of at least 60 days but not longer than 90 days | Active FAD Limit = 300; Maximum buoy acquired annually = 500. Not science- based / No FAD set limit | ※ | | | FAD buoy must contain a unique reference ID and IOTC vessel registraton number. New FAD marking scheme to be considered by Commission in 2022. | FAD tracking
and recovery
policy to be
developed in
2021. | No binding requirement for silky sharks. Encourages live release of live sharks and use of handling practices in Res.17/05. | | | | IATTC | Data
required, but
IATTC
compliance
assessment
weak | Provided
voluntarily | Active FAD Limits — vary by vessel size ¹ / Not science- based / No FAD set limit | Closure
for all
purse seine
fishing (FADs or
free school) | | Res. C-18-05 includes provisions for considering recommendations on use of biodegradable materials | FADs (buoy or raft)
to be marked with
unique identifier
code | Res. C-17-02
includes some
provisions for
FAD recovery
(para 13(b)) | Retention
prohibition | | No
prohibition
on
intentional
cetacean
setting | Continued on next page ¹ Class 6 (1,200 m3 and greater): 450 FADs / Class 6 (< 1,200 m3): 300 FADs. / Class 4-5: 120 FADs / Class 1-3: 70 FADs | RFMO | Sustainable Fish Stocks and Effective Management | | | | Minimizing Environmental Impact | | | | | | | | |-------|---|---|--|-----------------------------|--|---------------------------------------|---|---|--|--|---|--| | | FAD data
reporting
by set type
required
and flag
State
compliance
assessed | Providing data on FAD use to RFMO science bodies (e.g., buoy tracks, echosounder estimates of biomass, etc.) even if not required | Science-based
limits on FAD
deployments
and/or FAD
sets | Time/Area
FAD
closure | Require the use of
NE FAD designs | Promote the use of biodegradable FADs | Established
FAD
marking
scheme
consistent
with FAO
guidelines | Established FAD recovery policy, including mechanisms to alert coastal States of derelict FADs that may impact sensitive habitats | Require
mitigation
measures
for silky
sharks (main
bycatch
species in
FAD sets) | Adopt safe
handling and
release
practices for
sharks, rays
and sea
turtles | Prohibit
intentional
setting on
whale
sharks and
cetaceans | | | | | | | | | | | | | | | | | ICCAT | Data required, but flag state compliance weak | × | Active FAD Limit per vessel = 300 / Not science based / No FAD set limit | • | | | 8 | | Retention
prohibition | For sea
turtles | 8 | | | | | | | | | | | | | | | | | WCPFC | Data required, but WCPFC compliance assess- ment is not transparent | PNA members voluntarily provide to the SPC available buoy track data for vessels operating under the PNA VDS | Active FAD Limit = 350 / Not science based / No FAD set limit | | Required lower entangling designs as of 1 Jan 2020. At the 2020 annual session, the Commission will consider the adoption of measures for nonentangling and/or biodegradable material on FADs. | | | No WCPFC FAD recovery policy. However, recovery of FADs is being trialed by the PNA. | Retention
prohibition | | | | ## iss-foundation.org Address: 1440 G Street NW | Washington D.C. 20005 | United States Phone: + 1 703 226 8101 E-mail: info@iss-foundation.org